首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1488篇
  免费   284篇
  国内免费   62篇
化学   464篇
晶体学   11篇
力学   61篇
综合类   5篇
数学   11篇
物理学   1282篇
  2024年   4篇
  2023年   50篇
  2022年   61篇
  2021年   82篇
  2020年   80篇
  2019年   13篇
  2018年   54篇
  2017年   94篇
  2016年   87篇
  2015年   41篇
  2014年   152篇
  2013年   74篇
  2012年   115篇
  2011年   101篇
  2010年   92篇
  2009年   81篇
  2008年   75篇
  2007年   80篇
  2006年   89篇
  2005年   52篇
  2004年   53篇
  2003年   48篇
  2002年   34篇
  2001年   25篇
  2000年   30篇
  1999年   22篇
  1998年   28篇
  1997年   21篇
  1996年   22篇
  1995年   21篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1834条查询结果,搜索用时 15 毫秒
991.
We report our experiences in the evaluation of ultrasonic cleaning processes of objects made with additive manufacturing techniques, specifically three-dimensional (3D) printers. These objects need to be cleaned of support material added during the printing process. The support material can be removed by dissolution in liquids with or without ultrasonic cavitation.  相似文献   
992.
It is widely accepted that wind energy is clean and renewable. However, icing on the blade surfaces of wind turbines is a serious problem in cold regions, which greatly affects its performance. Therefore, it is important to prevent ice accumulation on the surface of wind turbine blade and remove it whenever necessary. In this paper, a new non-thermal method–ultrasonic de-icing for wind turbine blade is proposed. Firstly, baced on the theory of ultrasonic de-icing, the harmonic analysis of the structure of the composite plate-ice layered system is investigated using the finite element method. The simulation results showed that ultrasonic de-icing method is feasible for wind turbine blade de-icing purposes. Secondly, the de-icing experiment of wind turbine blades using piezoelectric actuators is carried out in the freezer at a temperature of −15 °C, results showed that the ice layer can be debonded from the surface of wind turbine blade by the commonly used piezoelectric transducers made by PZT-5. The optimal frequency of ultrasonic de-icing of wind turbine blade is also given; finally, the installation way of ultrasonic transducers on the inner surface of wind turbine blade is given.  相似文献   
993.
The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys., vol. 43, 1972, pp. 2944] [4]. Our analysis corrects an error in the previously reported results. Using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock-compressed diamond [Lang and Gupta, Phys. Rev. Lett., vol. 106, 2011, pp. 125502] [3], a complete and corrected set of third-order elastic constants (TOECs) is presented that differs significantly from TOECs published previously.  相似文献   
994.
用注射超声喷雾法将前驱体由针管直接送入超声喷头内,在石英基板上制备Zn_(1-x)Cr_xO(x=0.0,0.01,0.03,0.05)薄膜。采用X射线衍射仪、扫描电子显微镜、荧光光谱仪、紫外-可见分光光度计、振动样品磁强计(VSM)等对薄膜的结构、光学和磁学性质进行测量。实验结果表明,未掺杂的ZnO薄膜为六角纤锌矿结构,沿着c轴(002)择优取向,而Cr掺杂抑制了薄膜的c轴择优取向性;掺杂后的薄膜平均晶粒尺寸均增大,且当x=3%时,晶粒尺寸最大,达31.4nm。扫描电镜(SEM)下薄膜呈球形颗粒状,并且在x=5%下,薄膜出现了长条状的微观形貌。Cr掺杂使样品的光致发光谱(PL)发生了很大的变化:未掺杂的样品的PL谱在378nm处存在一个紫外发射峰,对应于550nm附近还存在一个由于缺陷态引起的绿光发射峰;掺Cr样品只有在350~550nm的很宽的范围内存在一个发射峰,对其进行高斯拟合后,发现掺Cr量为x=1%,3%,5%下样品均存在V_(Zn)(锌空位)、Zn_i(Zn间隙位)、V_(Zn)~-(带一个电子的锌空位)内部缺陷态,且当x=3%时,V_(Zn)最多。Cr的掺杂使得薄膜的带隙增大,并且x=3%时,禁带宽度最大,达到3.374eV。掺Cr的三个样品均具有室温铁磁性,且x=3%样品的磁化强度最大,其与V_(Zn)(锌空位)最大相对应,验证了Cr~(3+)和V_(Zn)的缺陷复合体是ZnO∶Cr样品具有稳定的铁磁有序的最有利条件的理论预测。  相似文献   
995.
动态光弹成像技术是观测固体内部超声应力场的重要手段,然而样品在制作过程中会产生残余应力,给观测带来一定干扰,特别是缺陷附近的应力集中效应,使得缺陷散射声场的研究更为困难。本文利用线性应力理论分析了超声应力与残余应力的相互关系,并推导出该叠加应力场在光弹系统中的光强表达式,通过实验验证,证明了该理论的可行性。本文结果可为应力集中区域的散射声场分析提供借鉴。  相似文献   
996.
Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid–structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.  相似文献   
997.
The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5–20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed.Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages.  相似文献   
998.
We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation.  相似文献   
999.
Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.  相似文献   
1000.
Cube micrometer potassium niobate (KNbO3) powder, as a high effective sonocatalyst, was prepared using hydrothermal method, and then, was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of prepared KNbO3 powder, the sonocatalytic degradation of some organic dyes was studied. In addition, some influencing factors such as heat-treatment temperature and heat-treatment time on the sonocatalytic activity of prepared KNbO3 powder and catalyst added amount and ultrasonic irradiation time on the sonocatalytic degradation efficiency were examined by using UV–visible spectrophotometer and Total Organic Carbon (TOC) determination. The experimental results showed that the best sonocatalytic degradation ratio (69.23%) of organic dyes could be obtained when the conditions of 5.00 mg/L initial concentration, 1.00 g/L prepared KNbO3 powder (heat-treated at 400 °C for 60 min) added amount, 5.00 h ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the micrometer KNbO3 powder could be considered as an effective sonocatalyst for treating non- or low-transparent organic wastewaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号